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Continuum theory of internal stresses in amorphous 
metals 
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Institut fur Physik, Max-Planck-Institut fur Metallforschung, Heisenbergstrasse 1,7000 
Stuttgart 80, Federal Republic of Germany 

Received 19 December 1988 

Abstract. Within the framework of the local linearised theory of elasticity, internal stresses 
in amorphous metals have been calculated using a Green function perturbation approach 
based on the incompatibility method. A simple model is introduced to describe the devel- 
opment of structural incompatibilities during the quenching process of the liquid metal, 
which are the sources for the internal stresses. The results are compared with those for the 
atomic-level stresses obtained with computer simulation studies by Egami and co-workers, 
and with the results derived by these authors from a continuum theory based on Eshelby’s 
inclusion problem. 

1. Introduction 

Whereas a perfect crystal is stress-free, deviations from the ideal lattice represent sources 
for internal stresses, i.e. stresses which can exist without the action of external forces 
(self-stresses; cf Kroner 1974). Examples are vacancies and interstitials, which exist 
in any crystal at non-zero temperature, or dislocations produced by non-equilibrium 
processes such as crystallisation and plastic deformation. In an amorphous material 
there are stresses at the atomic level because of the lack of atomic order. These atomic- 
level stresses are defined at any atomic position and result from the incompatibility 
between a given atom and its environment. They have been defined on a quantum- 
mechanical basis by Vitek and Egami (1987) and have been used by Egami and co- 
workers (see, e.g., Egami et al 1980, Srolovitz et al 1981a, b) to characterise the local 
topology and symmetry of a computer-generated amorphous structure. 

To illuminate the physical meaning of the local structural incompatibilities producing 
atomic-level stresses it is very instructive (Vitek and Egami 1987, Egami and Srolovitz 
1982) to extend the continuum elasticity theory to the atomic scale. An especially 
illuminating approach was the application of Eshelby’s (1957) theory of spherical 
inclusions in an elastic medium, identifying the inclusion with an atom which in an 
amorphous structure does not ideally fit into the environment as would be the case in a 
perfect crystal. Thereby the spherical inclusion is a special example for a structural 
incompatibility. It is therefore tempting to characterise the amorphous structure in a 
reasonable way by a field of incompatibilities. To do this we can in principle start from 
a topological model of the amorphous structure, for instance that of KlCman and Sadoc 
(1979), as discussed in the paper by Vitek and Egami (1987). In the present paper 
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we calculate the incompatibilities approximately from a simple model describing the 
distribution of thermal strains in the thermal equilibrium of the liquid material before 
the amorphous structure is obtained by quenching. 

Having defined the incompatibilities, the internal stresses may be calculated by the 
so called incompatibility method of elasticity theory, which was introduced by Reissner 
(1931) and developed further by Kroner (1958) for his theory of dislocations in crystals. 
It is well known that continuum theories can be extended to the atomic scale, but that 
in this case in principle a non-local theory should be applied because of the discreteness 
of the structure and the finite range of interactions between the atoms (Kroner 1967). 
However, it was also conjectured (Vitek and Egami 1987) that a local approximation 
suffices for general, qualitative considerations for which no very precise numbers are 
demanded. In the present paper we therefore confine ourselves to the local linearised 
theory of elasticity. 

The present approach, that is modelling of the incompatibilities and solution of the 
elastic problem by the incompatibility method, has already been applied successfully to 
the calculation of the effective magnetostriction tensor of amorphous and polycrystalline 
ferromagnets (Furthmiiller et a1 1986, 1987a, b, Pawellek et a1 1988, Fahnle et al 
1988a, b). In this case the incompatibilities arise from the various spontaneous mag- 
netostrictive strains that the differently oriented structural units would exhibit if they 
were elastically decoupled. In the present case the incompatibilities arise from the 
different thermal expansions that the isolated volume elements would exhibit in the melt 
as a result of thermal fluctuations. In both cases the structural units are described on a 
phenomenological level by introducing local material tensors, for example the local 
tensor of the elastic constants or the local magnetostriction tensor, instead of taking into 
account the detailed atomic structure. 

From the incompatibilities we calculate the total strains eIl(r) and the stresses all(r) 
by the incompatibility method. Thereby we are not interested in the detailed knowledge 
of the position dependence of and all, but in correlation functions of the type ( ~ ~ ~ ( r ) ) ,  
( ~ & r ) ~ ~ ~ ( r ’ ) ) ,  (a,(r))  and (a,(r)akl(r’)). To calculate them we must introduce some 
statistical assumptions (§ 2). Volume and ensemble averages will be regarded as ident- 
ical, that is we consider an ergodic situation. 

For the stresses, the average value (a,(r)) is zero due to the theorum of Albenga 
(1918 + 1919). Therefore we will concentrate on the tensor of the correlation functions 
(oll(r)akl(r’)) for r = r’ for the two invariant combinations of its components respect- 
ively, the hydrostatic pressure d\/(p2> and von Mises’ (1913) shear stress d/(z, with 

In equations (1) and (2) and in the following we adopt Einstein’s summation convention. 
For the strains, both the average value ( ~ ~ ~ ( r ) )  as well as the correlation functions 

(ELl(r)Ekl(r)) are of interest. We can define in an analogous way invariant measures for 
the length dilatation (which is 4 of the volume dilatation) and von Mises’ shear 
strains (which vanish for isotropic strain = AS,) by 

12 = +&,,El l  (3) 

s2 = ~ E I I E I l  - ~ E , , E I I .  (4) 

Our paper is organised as follows. In Q 2 we introduce the general formalism of the 
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incompatibility method which allows us to calculate the internal stresses from the 
incompatibilities. This formalism is the same as that used for the calculation of the 
effective magnetostriction tensor from the magnetostrictive incompatibilities of an 
amorphous material (Furthmuller et a1 1986, 1987a, b, Pawellek et a1 1988, Fahnle et al 
1988a, b). In fi 3 we will discuss our simple model for the calculation of the structural 
incompatibilities in amorphous metals. The results of the calculations for the strains and 
internal stresses are given in § 4, where we also compare our approach in detail with the 
continuum theory of Egami and Srolovitz (1982) based on Eshelby's (1957) inclusion 
problem. 

2. The incompatibility method 

To illustrate the basic concept of the method the following gedanken experiment is 
performed. First we define the state of the system without the incompatibilities under 
consideration as the reference state. For the calculation of the effective magnetostriction 
tensor of amorphous ferromagnets, this state is the amorphous state with the exchange 
interactions between the magnetic moments switched off, i.e. without magnetisation 
and without magnetostrictive deformations. It should be noted that due to the atomic- 
level stresses this state is not stress-free for an amorphous system. For the calculation of 
the atomic-level stresses we consider in the present paper the perfectly ordered crys- 
talline state as the reference state. 

We now cut the system into very small structural units. For both calculations those 
units consist basically of an atom and its nearest-neighbour atoms. In the magneto- 
striction case this is motivated by the fact that the local magnetic anisotropy, which is 
responsible for magnetrostriction in amorphous ferromagnets, varies randomly from 
site to site (Elsasser et a1 1988). For the calculation of atomic-level stresses we introduce 
the incompatibilities by considering the different thermal expansions that the volume 
elements would exhibit in the melt (§ 3 ) .  It is reasonable to assume that in the melt 
clusters of an atom and its nearest-neighbour atoms may be considered to be more or 
less independent. It should be noted that in the case of the amorphous reference state 
for the magnetostriction problem we do not allow for relaxation processes during the 
cutting procedure which would remove the atomic-level stresses. We can therefore at 
this stage of the gedanken experiment again weld together the volume elements to a 
compact material. 

In the next step of the gedanken experiment we allow for so called quasiplastic 
deformations of the volume elements. In the magnetostriction case the quasiplastic 
deformations are introduced by switching on the exchange interactions and applying a 
very strong external magnetic field, so that all units have a magnetisation in the same 
direction. As a result the units will exhibit spontaneous magnetostrictive strains like 
small monocrystalline ferromagnets, and because of the random orientations of the 
magnetic anisotropy axes all the units are deformed in a different way. Because the 
structural units retain this state of spontaneous magnetostrictive deformation without 
support of external forces (as in the case of plastic deformation of a crystal), the 
magnetostrictive strains E Y ~  belong to the class of quasiplastic deformations E$', which 
are by definition stress-free. For the calculation of atomic-level stresses in amorphous 
metals we associate the quasiplastic deformations with the thermal expansions that the 
isolated units will experience when exposed to a heat bath. The coupling to a heat bath 
thereby simulates the situation of the system before quenching it to the amorphous state. 
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These quasiplastic deformations are also different for different units because of the 
thermal fluctuations (§ 3) ,  and they are frozen by the quenching process. 

After the introduction of the spatially fluctuating quasiplastic deformations E: the 
units no longer fit together to a compact material. Additional elastic strains ~ : ( r )  are 
required to restore compatibility of the material in the last step of the gedanken exper- 
iment, and the total strain .zIJ(r) is given by 

E&) = E I : k )  + &;@I. ( 5 )  
For given quasiplastic strains E; ( r )  the elastic strains E; (T )  therefore must be determined 
in such a way that 

Ink(EQ(r) + eel(r))  = 0. (6) 

Furthermore, the balance-of-force equation must be fulfilled, which in the absence of 
external forces is given by 

Div U = 0. (7) 
U denotes the tensor of elastic stresses, which are related to the elastic strains by 

where CijkI denotes the tensor of the elastic constants. 

tensor Aijkl(r, r ’ )  via 
Equations (6)-(8) may be formally solved using the (yet unknown) stress Green 

aii(r) = d 3 r ’  Aijkl(r ,  r r ) & i ( r r ) .  J (9) 

In the case of an infinitely extended homogeneous isotropic medium, Aijkl can be 
calculated explicitly (Kroner and Koch 1976, Kroner 1986) and is given in k-space by 

with 

r $ ( k )  = [ ( ~ K o  + Go)/Go(3Ko + 4Go)I(k,k,kkk//k4) - (1/Go)(k,kkd,/ /k2).  

(11) 
Here C$/,  K O  and G o  denote the tensor of the elastic constants, the bulk modulus and 
the shear modulus of the homogeneous isotropic medium. 

In the amorphous material the tensor of the elastic constants is a spatially fluctuating 
quantity. To model the situation in a phenomenological frame it has been assumed 
(Furthmuller et a1 1986, 1987a, b, Pawellek et a1 1988, Fahnle et a1 1988a, b) that the 
small structural units are all identical in their own reference frame and exhibit well 
defined anisotropy. Due to the random orientation of the anisotropy axes the tensor of 
the elastic constants Cr,kl(r) and the tensor of the elastic compliances S,,kl(r) in an external 
fixed coordinate system exhibit spatially random fluctuations, and the volume average 
(C&-)) yields an isotropic tensor. 

For spatially fluctuating material parameters the stress Green tensor ABkl(r, r ’ )  
cannot be calculated explicitly. In this case the stress a,(r) may be calculated by a 
Green function perturbation theory with the fluctuations dSl,kl(r) = Sqkl(r) - (&[(r)) as 
perturbation parameter (Kroner and Koch 1976, Kroner 1986, Furthmuller et a1 1987a, 
Fahnle et a1 1988b). In the following we restrict our considerations to the zeroth-order 
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perturbation, i.e. we neglect all terms containing the fluctuation 6S,,,, yielding 

a,(.) = J d 3 r f  A@(r-  r f ) & $ ( r f )  (12) 

(0) M nere A r,kl denotes the Green stress tensor for a hypothetical homogeneous isotropic 
medium with the tensor (C+(r)) of elastic constants. If the structural units of our 
amorphous material had isotropic elastic properties, the zeroth-order term would yield 
the exact solution. 

From equation (12) we obtain 

(13) (or , (r)ukl(r’))  = d3r” d3r”’ Arlmn(r (0) - r”)Aklpq(rf (0) - r f” ) (~2n(J ’ )~:q ( r f” ) ) .  i 
To evaluate these correlation functions we need as statistical input the correlation 
functions ( E  2, ( r ” ) ~ : ~  (r‘”)) of the quasiplastic strains. In the following we assume that 
the quantities may be written as 

( E  ( r ” ) ~  PQS ) = ( E  2, (r”))( E pQ4 (rfff)) + g( rrf - rf”)( 6 E zn ( rff)6 E pQ4 (if)) (14) 
with 6 ~ 2 ,  = ~ 2 ,  - ( ~ 2 ~ ) .  Theaverages(&2,)and(S&$,(r)6&,Q,(r))aredeterminedby 
a simple model calculation in the next section. Furthermore, taking into account the 
properties of the stress Green tensor A ri19 it may be shown that for r = r ’ ,  that is for the 
calculation of (or,(r)ok[(r)) for example, we do not need the explicit form of the function 
g(r” - rrf’) of equation (14) but just the properties g(0) = 1 and g(m) = 0. We then can 
solve the integrals in equation (13) analytically in k-space, yielding 

( a  r, (+kl (.I) = T p n k l p q  (6 E %l(4 6 E :q 6.1) (15) 

where the tensor Tis composed of combinations of the material parameters K O  and Go. 
From equation (15) we then can calculate the hydrostatic pressure and von Mises’ shear 
stress according to equations (1) and (2). The total strain E&T) is given by 

E l , @ )  = EI:(r) + E ; @ )  = E f :  + S L , k P k l .  

( E , , ( +  = (&I:) + S , k l ( G k l )  = ( E ; )  

(16) 

In the zeroth-order approximation ( c ~ S , ~ ,  = 0) this yields 

(17) 
where we have used the theorem of Albenga (1918 + 1919). This means that the volume 
average of the total strain is in the zeroth-order approximation exclusively determined 
by the quasiplastic strains, whereas the elastic part averages out. From equations (15) 
and (16) we can calculate the quantities (er,(r)ckl(r))  and then according to equations (3) 
and (4) the invariants I and s. Of course, for these quantities as well as for the whole 
distribution function for E ~ , ( T ) ,  the elastic part E ;  will also play a role. 

3. Model for the quasiplastic strains 

In this section we discuss a simple model to introduce into the system the quasiplastic 
strains responsible for the atomic-level stresses in amorphous materials. The starting 
point is the fact that the amorphous state is obtained in the experimental quenching 
procedure, i.e. by freezing the liquid-like structure of the system. To a rough approxi- 
mation the liquid may be modelled by considering small structural units, consisting 
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basically of an atom and the nearest-neighbour atoms. The units are swimming in a heat 
bath with characteristic temperature TC, which may be identified with the temperature 
just before the freezing in the quenching process takes place, probably a temperature 
between the melting temperature and the glass temperature. In the heat bath the units 
are thermally expanded compared with their state at low temperature. Because a thermal 
strain is maintained without the support of any external forces, it belongs to the class of 
quasiplastic strains E $ .  As a result of the thermal fluctuations in the heat bath, there is 
a distribution of quasiplastic strains with a probability density functionp(EQ) given by 
a Boltzmann distribution 

p ( e Q )  - exp[-W(eQ)/k~] .  (18) 
Here W(cQ) is the increase of energy of the unit associated with the thermal expansion. 
For W(eQ) we consider two different ansatzes. 

and 
can be expanded as 

W ( e Q )  = Vo[(1/2!)C(2)(Tr eo)’ + (1/3!)C(3)(Tr 

(i) The energy W ( e Q )  depends only on the volume dilatation AV/V = Tr 

+ (1/4!)C(4)(Tr + . . . J .  (19) 
In this case the volume elements may be called liquid because their energy does not 
depend on the shear strains. The quantity V, denotes the volume of the structural unit 
and is the only microscopic quantity which enters our theory. The quantity C(’) is the 
bulk modulus of the structural unit. 

(ii) The energy W ( E  Q, depends on all components of e Q ,  i.e. 

The quantities of interest, ( ~ $ ( r ) )  and (E;(r)E$(r)), enteringequations (13) and (14) 
may be calculated analytically from equations (18)-(20) when confining to the quadratic 
terms in equations (19) and (20). The price we have to pay is that in this linear approxi- 
mation the volume average ( E ; )  vanishes, and hence, according to equation (17), there 
is no macroscopic deformation ( E ~ , )  due to the internal structural incompatibilities. This 
is in contrast to the experimental fact that the specific volume of the amorphous system 
is larger than that of the corresponding crystalline system. The difference, which is of 
the order of a few per cent, is called the free volume (see, e.g., Kronmuller 1981,1984, 
Brandt and Kronmuller 1983). Indeed, when going beyond the linear approximation 
by numerical calculation and when inserting reasonable values for the higher-order 
coefficients C(3) and C(4), we obtain from equation (19) a free-volume effect of the right 
order of magnitude. Because the inclusion of the higher-order terms of equations (19) 
and (20) yields only a relatively small modification of the quantities ( ~ $ ( r ) ~ k q ( r ) ) ,  we 
confine ourselves to the quadratic terms in the energy expressions. In case (i) this yields 

(6 E? 6 E $ )  = (1 /9)(kT/ C(’) Vo)6,6k,. (21) 

For case (ii) we consider a cubic anisotropy of the volume elements which is reasonable 
for the case of iron for which we present the results in § 4. Because the volume elements 
are randomly distributed in the melt with respect to their orientation, the ensemble 
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average (symbol ( )) includes an average over all orientations. Altogether, we obtain 

(a&?ia&?i> = ~ [ ( ~ C I I  + c12)/(c11 - Cd(c11  + 2c12) + 1/C44lkT/Vo 

<S&?IS&% = &[(cl1 - 3Clz)/(c11 - C1z)(cll + 2ciz) - 1 /2C~lkT/Vo  

( S & p , S & ~ )  = &[l/(C,, - C12) + 3/4C4]kT/Vo. 

(22) 

(23) 

(24) 
Here the quantities C, denote the elastic moduli of the cubic crystal in Voigt's notation, 
with i(Cll + 2C12) denoting the bulk modulus C@). With equations (21)-(24) we can 
calculate the stresses (aii(r)akr(r)) according to equation (15) and the strains (eij(r)Ekl(r)) 
via equation (16), yielding the invariants given by equations (1)-(4). 

4. Results and discussion 

In the following we consider the case of hypothetical pure amorphous iron, for which 
we can compare our results with those of computer simulations (see, e.g., Egami and 
Srolovitz 1982). For the calculations we need two sets of material parameters. 

(1) The bulk and shear moduli K O  and Go, entering equation (15), of the hypothetical 
homogeneous isotropic medium at that temperature for which we want to calculate the 
internal stresses in the amorphous material. As discussed in 3 2 we may regard the 
volume average (Ciikl(r)) for the amorphous material as the elasticity tensor of this 
hypothetical medium, and we may yield this tensor in a simple model by averaging the 
elasticity tensor of the structural units over all orientations of the units. Assuming cubic 
symmetry of the units and inserting for the tensor components Cll, C12 and C4in the local 
coordinate systems the values for iron at 300 K, we obtain KO = 1.67 x lo1' dyn cm-' and 
Go  = 8.92 x lo1' dyn cm-2. 

(2) The bulk modulus C(2), or the tensor Cijkl (Cll, C12 and C44, respectively), 
entering equations (21)-(24), which describe the elastic properties of the isolated volume 
elements in the heat bath at the characteristic temperature T c .  When considering the 
isolated volume elements in the heat bath as liquid (case (i) of 3 3), it is most reasonable 
to insert for TC the melting temperature of iron, Tc = 1807 K. When assuming that the 
volume elements just before the freezing procedure are solid (case (ii) of 3 3), it is more 
appropriate to identify TC with the glass temperature of 760 K. To yield reasonable 
estimates for the elastic constants at these temperatures we have extrapolated the 
tabulated low-temperature values (Landolt-Bornstein 1979) in an appropriate manner 
(tables 1,2). 

The results for the invariants may be represented in the form A(kTC/Vo), where A 
is a respective prefactor (containing combinations of the two sets of material 
parameters), T' is the characteristic temperature and Vo is the volume of the isolated 

Table 1. The calculated invariants at a temperature of 300 K for case (i), amorphous iron, 
for two different values of the characteristic temperature T'. 

760 1.59 X lo'* 0.0326 0.0282 0.0164 0.0306 
1807 0.89 X 10l2 0.0672 0.0582 0.0339 0.0630 
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Table 2. The calculated invariants at a temperature of 300 K for case (ii), amorphous iron, 
for two different values of the characteristic temperature T'. 

T" cl:' CPi) C@ m m  
(K) (dyncm-2) (dyncm-2) (dyncm-') (eVA-3) ( e V k 3 )  

760 2.00 X lo'* 1.38 X 10l2 1.05 X lo'* 0.0585 0.114 0.0226 0.190 
1807 0.98 X 10l2 0.85 X loL2 0.72 x lo1* 0.160 0.335 0.0574 0.558 

units in the heat bath. In the following we insert for V o  the atomic volume of crystalline 
iron, V o  = 11.7 A3. 

In tables 1 and 2 we report our results for the hydrostatic pressure p ,  the shear 
stress z and the corresponding strains. For comparison, the above-quoted computer 
simulations for amorphous iron at zero temperature yield d/(p2> = 0.064 eV k3 and 

= 0.104 eV A-3. These values are rather similar to our results when we insert as 
the characteristic temperature TC the melting temperature in case (i) (liquid volume 
elements) or the glass temperature in case (ii) (solid units), as discussed above. The 
agreement must be considered as rather good in view of the fact that we have adopted 
some approximations, for instance the local continuum theory or the zeroth-order 
approximation for the perturbation theory. It should be noted that by our theory we can 
of course only calculate statistical averages for the stresses and strains, but not the 
stresses and site-symmetry coefficients (see, e.g., Egami et a1 1980) at individual sites. 

When inserting for K O  and Go the values at the glass temperature instead of those at 
room temperature and adopting our case (ii), that is solid volume elements, we can also 
calculate the stress invariants at the glass transition and can compare the results with 
those obtained by molecular dynamics studies (Vitek et a1 1984) and by a continuum 
model of the glass transition based on Eshelby's inclusion problem (Egami and Srolovitz 
1982). As shown in table 3, the results of all three studies agree very well concerning the 
hydrostatic pressure d/o. For the shear stresses dm, our result is similar to that of 
the molecular dynamics study, but differs by a factor of about two from the continuum 
result of Egami and Srolovitz (1982). Although, in view of the various approximations, 
the detailed numerical values of the continuum models should not be taken too literally, 
we want to elucidate the latter point further by comparing our approach with that of 
Egami and Srolovitz. 

Both theories start from an ideal reference state without any internal stresses and 
introduce the internal stresses via incompatibilities. In our theory the incompatibilities 
are represented by the distribution of quasiplastic thermal strains E: that the isolated 
volume elements will exhibit in a heat bath at the glass transition temperature. For a 
given spatial distribution of quasiplastic strains we could in principle calculate the stress 
field a,(r) via equation (91, thereby taking into account all the elastic interactions 
between different sites. Of course we do not know the values of E: at the individual sites 
r,  but we have as statistical information just the correlation function ( E$,(r")eFqr"')), 
which, according to equation (14), is given by the correlation function g(r" - r'") and by 
the statistical averages ( E $ , )  and (6E$,(r)c3&pQq(r)). From the correlation function for 
the quasiplastic strains we can calculate the statistical averages (a,(r)akl(r')) according 
to equation (13), which of course also contain elastic coupling effects between different 
sites. The averages (E$ , )  and ( c3&$,(r)c3&Fq(r)) are calculated from Boltzmann statistics 
for the isolated volume elements. Statistical correlations between the fluctuations of the 
quasiplastic strains may be included in principle via the correlation function g(r" - r"'), 
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Table3. Comparison of the invariants at the glass temperature for amorphous iron, calculated 
in different theories. To obtain the final values, kTc and V o  must be inserted in units of eV 
and A3, respectively. 

( e v  A-3) ( e v  A-3) 

Egami and Srolovitz (1982) 0 . 6 5 3 d m  0 . 7 6 8 v m  
Vitek et a1 (1984) 0 . 7 5 0 d m  1 . 2 9 8 d m  
Present paper 0 . 8 0 6 d m  1 . 5 3 5 V ‘ m  

although in the zeroth-order approximation method for (oq(r)okl(r)) the explicit form 
of this correlation function does not enter. 

Obviously in our theory two types of correlations between different sites are included 
in principle, i.e. statistical correlations in the spatial distribution of quasiplastic strains 
via the function g(rff - r’”) and elastic coupling effects between different sites via 
equation (9). 

In their continuum theory of the glass transition, Egami and Srolovitz (1982) intro- 
duce the atomic-level stresses by a simple type of incompatibility, namely atoms which 
in an amorphous structure do not ideally fit into the environment as would be the case 
for a perfect crystal. The misfitting atom is modelled by an inclusion in a continuum. 
The total energy of the system is calculated with Eshelby’s (1957) theory of inclusions 
as a sum of elastic energies associated with the local stresses oL,. It is assumed that the 
stress fluctuations are essentially independent of each other, that is any correlations 
between the various inclusions are neglected. The total energy expression contains only 
one set of material parameters, namely that of the amorphous system at the temperature 
considered. (It should be noted that in the paper by Egami and Srolovitz the zero- 
temperature elastic constants obtained from a computer model of amorphous iron are 
inserted instead of the values at the glass temperature, i.e. the temperature dependence 
of the elastic constants is negelcted. In our theory two parameter sets are needed, 
that for the temperature considered and, for case (ii), that for the glass transition 
temperature. When considering the internal stresses at the glass transition itself, the two 
sets coincide.) Having determined in this way the total energy as a quadratic function 
of the independent local stresses, the thermal averages (oi,okl> are calculated using 
Boltzmann’s statistics, quite similar to our approach. 

Obviously the main difference between the two theories concerns the inclusion of 
correlation effects between different sites in our theory. Perhaps this may explain the 
fact that our results are closer to the molecular dynamics results (Vitek et a1 1984) than 
to those of Egami and Srolovitz (1982). However, one should also take into account, for 
a comparison of the continuum theories with the molecular dynamics study, that the 
latter results include dynamic fluctuations whereas the continuum theories assume a 
quasistatic state (Vitek et a1 1984). 
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